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Based directly on the microscopic lattice dynamics, a simple high temperature
expansion can be devised for non-equilibrium steady states. We apply this
technique to investigate the disordered phase and the phase diagram for a
driven bilayer lattice gas at half filling. Our approximation captures the phases
first observed in simulations, provides estimates for the transition lines, and
allows us to compute signature observables of non-equilibrium dynamics,
namely, particle and energy currents. Its focus on non-universal quantities offers
a useful analytic complement to field-theoretic approaches.
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1. INTRODUCTION

Many-particle systems in a state of thermal equilibrium are the exception,
rather than the rule. Physical reality is overwhelmingly in a far-from-equi-
librium state. Examples range from living cells and weather patterns to
ripples on water and sand. As we leave the framework of standard Gibbs
ensemble theory for equilibrium systems, we have to search for new
avenues and tools, seeking to understand and classify non-equilibrium
behavior. As a first step along this road, the study of the simplest general-
izations of equilibrium systems, i.e., non-equilibrium steady states (NESS),
has been particularly fruitful. (1, 2) Progress has relied predominantly on
simulations, mean-field theory and renormalization group analyses for
simple model systems. A class of models which exhibit especially interesting



behavior are driven diffusive systems. Microscopically, these are lattice
gases, consisting of one or more species of particles and holes, whose den-
sities are conserved. An external driving force, combined with suitable
boundary conditions, maintains a NESS. In the simplest case, (3) a uniform
bias, or drive, E, is imposed on an Ising lattice gas such that a nonzero
steady-state mass current is induced. This model differs significantly from
the usual Ising model: it displays generic long-range correlations, (3–5) and
belongs to a non-equilibrium universality class (6) with upper critical
dimension dc=5. The ordered phase is phase-separated into two strips of
high vs. low density aligned with the bias. In contrast to equilibrium, bulk
and interfacial properties are inextricably intertwined here. (7)

To avoid the complications due to the presence of interfaces, a bilayer
structure was suggested: (8) in the two-dimensional case, a second lattice was
introduced, allowing for particle-hole exchanges between each site and its
mirror image. This bilayer system is half filled with particles, and both
layers are driven in the same direction. In the absence of any energetic
couplings between the two layers, it was hoped that typical ordered con-
figurations would show homogeneous densities on each layer, one almost
full and the other nearly empty. Remarkably, however, this expectation
proved too naive: Monte Carlo simulations (9) showed a sequence of two
phase transitions, as the temperature is lowered: the first transition takes
the system from a disordered (D) phase to a strip-like (S) structure showing
phase-separation within each layer, with interfaces parallel to the drive and
‘‘on top of’’ one another. The anticipated ‘‘full-empty’’ (FE) phase, with
uniform densities on both layers, only emerges after a second transition
which occurs at a lower temperature. Once an interaction J, of either sign,
between nearest neighbors on different layers is introduced, the full phase
diagram in (J, E) space can be mapped out, (10, 11) using Monte Carlo simu-
lations. As one might expect, the S (FE) phase dominates for attractive
(repulsive) cross-layer coupling J. Remarkably, however, there is a small
but finite region where the S-phase prevails even though the cross-layer
coupling is weakly repulsive (cf. Fig. 1). The presence of this domain puts
the two transitions, observed for J=0, into perspective. We note for
completeness that universal properties along the lines of continuous transi-
tions have been analyzed in ref. 12 with the help of renormalized field
theory.
To provide additional motivation for the study of layered structures,

we note that multilayer models have a long history in equilibrium statistical
mechanics. (13–15) On the theoretical side, they allow for the study of dimen-
sional crossover; (16) on the more applied side, they provide natural models
for the analysis of intercalated systems, (17) interacting solid surfaces or thin
films. (18) Since intercalated systems are often driven by chemical gradients
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Fig. 1. The phase diagram of the driven bilayer lattice gas from Monte Carlo simulations, (10)

at J0=1 and infinite E. T is measured in units of the Onsager temperature, Tc(0). The
domains of the three phases are indicated. The inset magnifies the vicinity of J=0, T=1.0 to
demonstrate the shift of the bicritical point to negative J. Open (filled) circles indicate
continuous (first order) transitions.

or electric fields, to speed the diffusion of foreign atoms into the host
material, it is quite natural to study driven layered structures.
Simulations relie, of course, on discrete lattice models. In contrast,

field theories operate in the continuum, and thus, all discrete degrees of
freedom have to be coarse-grained before these powerful techniques can be
applied. In the process, non-universal information is lost, such as, e.g., the
location of transition lines in the phase diagram. It is therefore desirable to
identify a second analytic approach which is based directly on the micro-
scopic model and thus complements both simulations and continuum
theories. Fortunately, high temperature expansion techniques (19) can be
generalized to interacting driven lattice gases. (4, 20, 21) For the single-layer
case, two-point correlation functions can be computed approximately (4, 20)

and display the expected power law decays in the steady state. With some
care, the approximate location of order-disorder transitions can be
extracted and compared to simulation results. (20) Given the nature of the
approximation, quantitative accuracy cannot be expected, but the qualita-
tive agreement of data and approximation is remarkably good.
While the high temperature expansion is quite successful for the usual

driven lattice gas, it is not clear to what extent it is capable of capturing the
main features of other driven systems. This motivates the work presented in
this paper, namely, the analysis of the bilayer system with this technique.
Within a first-order approximation, we compute the two-point correlation
functions and several related quantities, such as the particle current and the
energy flux through the system. We extract the approximate location of the
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continuous transition lines and compare our results to the Monte Carlo
data. As in the single-layer case, the qualitative features of the transition
lines are reproduced as well as can be expected. Some limitations of the
method will be discussed.
This paper is organized as follows. We first introduce the bilayer

model. After a brief summary of the high temperature expansion, we derive
the closed set of equations satisfied by the two-point functions. We then
obtain the solutions and extract the transition lines. Next, we show how the
mass and energy currents through the system can be expressed in terms of
pair correlations. We conclude with some comments and open questions.

2. THE BILAYER MODEL

A variant of the driven Ising model, (3) the model consists of two
square lattices, one stacked above the other, resulting in a bilayer structure
of size L2×2. Each lattice site rF— (x, y, z), with x, y=1, 2,..., L and
z=0, 1, carries a spin variable s(rF)=±1. Often, we also use lattice gas
language, mapping spins into particles or holes. The total magnetization,
;rF s(rF), is fixed at zero so that the Ising critical point can be accessed.
Within each layer, nearest-neighbor spins interact through a ferromagnetic
exchange coupling J0 > 0; in contrast, the cross-layer interaction J, which
couples spins s(x, y, 0) and s(x, y, 1), can take both signs. These choices
are motivated by the physics of intercalated systems. (17) Thus, the Hamil-
tonian of the system can be written in the form

H=−J0 C
z

C
nn
s(x, y, z) s(x −, y −, z)−2J C

x, y
s(x, y, 0) s(x, y, 1) (1)

where ; nn denotes the sum over all nearest-neighbor pairs (x, y, z) and
(x −, y −, z) within the same plane. A heat bath at temperature T is coupled
to the system, in order to model thermal fluctuations. We use fully periodic
boundary conditions in all directions; hence the factor of 2 in front of the
cross-layer coupling J.
In the absence of the drive, particles hop to empty nearest-neighbor

sites according to the usual Metropolis (22) rates, min{1, exp(−b DH)},
where DH is the energy difference due to the jump. Respecting the conser-
vation of density, the phase diagram of this system is easily found. At high
temperatures, a disordered phase persists, characterized by correlations
which fall off exponentially. At a critical temperature Tc(J), a continuous
transition occurs into the S (FE) phase for J > 0 (J < 0). At J=0, the
critical temperature takes the Onsager value (23) Tc(0)=2.269. . .J0/kB. For
finite J, Tc(J) is even in J, due to a simple gauge symmetry, and increases
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monotonically with |J|. For JQ ±., nearest-neighbor spin pairs, with the
partners located on different layers, combine into dimers who couple to
neighboring dimers with strength 2J0. As a result, the critical temperature
approaches the limit Tc(±.)=2Tc(0). The line J=0, T < Tc(0) is a line of
first-order transitions between the S and FE phases. It ends in a bicritical
point at J=0, T=Tc(0).
To drive the system out of equilibrium, we apply a bias (an ‘‘electric’’

field) EF along the positive x-axis. The contents of two sites, rF and rF+â,
separated by a (unit) lattice vector â, are exchanged according to the rate

c(rF, rF+â; {s})=min{1, exp[−b DH+12 bâ ·EF (s(rF)−s(rF+â))]} (2)

The argument {s} reminds us that the rate depends on a local neigh-
borhood of the central pair. Due to E, particle hops against the drive
become unfavorable. In conjunction with periodic boundary conditions in
the x- and y-directions, the system settles into a non-equilibrium steady
state with a net particle current.
The phase diagram, resulting from Monte Carlo simulations at J0=1

and infinite E, is shown in Fig. 1. The same phases and transitions are
found, but the bicritical point and its attached first order line are shifted to
higher T and into the J < 0 region. Thus, the S phase is observed to be
stable in a finite window of negative interlayer coupling, so that two tran-
sitions must occur along the J=0 axis. This discovery represents the most
unexpected new characteristic of this driven diffusive system. We also note
the decrease of the critical temperatures for very large |J|. In a recent
paper, (11) this phase diagram was extended to include unequal intra-layer
attractive couplings. In this case, the bicritical point is shifted even further
into the negative region of J as the coupling transverse to the bias increa-
ses. In the following, we turn to an analysis in terms of a high temperature
expansion.

3. HIGH TEMPERATURE EXPANSION

The dynamics underlying the Monte Carlo simulations is easily
expressed via a master equation. The latter provides a convenient starting
point for a high temperature expansion. For simplicity, we take the ther-
modynamic limit within each plane, i.e., LQ.. Following ref. 4, we first
derive the equations of motion for the two-point functions. By virtue of the
familiar hierarchy, they are coupled to the three-point functions; however,
we will argue that these are negligible (while non-zero, they are numerically
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rather small), so as to arrive at a closed system of equations for the two-
point correlations. Temperature appears in these equations through the
rates, via the combinations bJ, bJ0, and bE. To preserve the non-equilib-
rium nature of our dynamics, we expand in bJ and bJ0, keeping bE finite.
Technically, this requires that E always dominates the energetic contri-
bution, i.e., E > DH for all jumps along E. To first order, a linear,
inhomogeneous system of equations results, which can be solved exactly (20)

and forms the basis of our analysis.

3.1. The Equations of Motion and Their Solution

Before turning to any detailed calculations, let us introduce the key
quantities. The two-point correlation function is defined as:

G(rF−rF −)=Os(rF) s(rF −)P (3)

where O ·P denotes the configurational average. G is invariant under
translations and under reflection of one or several lattice directions. At
the origin, it is obviously unity, G(0F)=Os2(rF)P=1. We also introduce the
Fourier transform of G, i.e., the structure factor:

S(k, p, q) — C
z=0, 1

C
.

x, y=−.
G(x, y, z) e−i(kx+py+qz) (4)

In the thermodynamic limit LQ., the wave vectors k and p are continu-
ous, but restricted to the first Brillouin zone [−p, p], while q is discrete,
taking only the two values 0 and p. We also give the inverse transform,

G(x, y, z)=
1

2(2p)2
C
q=0, p

F
+p

−p
dk F

+p

−p
dp S(k, p, q) e i(kx+py+qz)

— F S(k, p, q) e i(kx+py+qz) (5)

where the second line just defines some simplified notation.
To set up the high temperature expansion, we first define the actual

expansion parameters of our theory, namely

K0 — bJ0

K — bJ
(6)
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For K=K0=0, the steady state is known to be uniform for all E, (24) so
that we are expanding about a well-defined zeroth order solution. The cor-
relation functions and structure factors for this limit are trivial, namely,
G(rF)=drF, 0F where d denotes the Kronecker symbol, and S(k, p, q)=1.
Hence G(rF) with rF] 0F is already of first order in the small parameter in the
interacting case. Similarly, we can extract the zeroth order contribution
from the structure factor, writing

S(k, p, q)=1+S̃(k, p, q) (7)

so that S̃ carries the information about the interactions.
The exact equations of motion for G are easily derived from the

master equation: (4)

d
dt

Os(rF) s(rF −)P=C
xF, xFŒ

Os(rF) s(rF −)[s(xF) s(xF −)−1] c(xF, xF −; {s})P (8)

Here, the sum runs over nearest-neighbor pairs (xF, xF − ) such that xF ¥ {rF, rF −}
but xF − ¨ {rF, rF −}. Stationary correlations are obtained by setting the left hand
side to zero. Clearly, jumps along and against all three lattice directions
will contribute to the right hand side of Eq. (8).
To proceed, let us write the jump rates in a form which makes their

dependence on the spin configuration {s} explicit, so that the configura-
tional averages in Eq. (8) can be performed. For finite drive, our restriction
E > DH ensures that jumps along E occur with unit rate, while those
against E are suppressed by a factor of exp[−b(DH+E)]. Defining

e — e−bE (9)

the transition rates parallel to the field can be written as

c||(rF, rF+x̂; {s})=
1
4
[s(rF)−s(rF+x̂)+2]+

e

4
[s(rF+x̂)−s(rF)+2] exp(−b DH)

(10)

where x̂ is a unit vector in the positive x-direction. Transverse to the field
we have two jump rates, corresponding to the directions y and z. Both of
these are regulated by the energy difference due to a jump:

c+(rF, rF+â; {s})=min{1, exp(−b DH)} (11)
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We are now ready to expand the rates in powers of K and K0 while keeping
e finite:

c||(rF, rF+x̂; {s})=
1
4
[s(rF)−s(rF+x̂)+2]

+
e

4
[s(rF+x̂)−s(rF)+2](1−b DH)+O(b2) (12)

c+(rF, rF+â; {s})=1−
1
2
b( DH+|DH|)+O(b2) (13)

Given these simple forms for the rates, we can derive the equations of
motion satisfied by the pair correlations directly from Eq. (8), following
ref. 4. Keeping only corrections to first order in K, K0 and neglecting three-
point correlations, we obtain a closed set of linear equations for G(x, y, z).
Since the dynamics is restricted to nearest-neighbor processes, it is not
surprising that the equations involve an anisotropic lattice Laplacian acting
on G(x, y, z). For x, y, z near the origin, the Laplacian may include the
origin and will thus generate inhomogeneities in the system of equations.
The detailed form depends on the boundary conditions in z, and, of course,
on the three parameters K, K0, and e. Below, we show the set of equations
for fully periodic boundary conditions. The first three equations result
from nearest neighbors of the origin, rF=(1, 0, 0), (0, 1, 0), and (0, 0, 1):

“tG(1, 0, 0)=(1+e)[G(2, 0, 0)−G(1, 0, 0)]+4[G(1, 1, 0)−G(1, 0, 0)]

+4[G(1, 0, 1)−G(1, 0, 0)]+2eK0+8K0

“tG(0, 1, 0)=2(1+e)[G(1, 1, 0)−G(0, 1, 0)]+2[G(0, 2, 0)−G(0, 1, 0)]

+4[G(0, 1, 1)−G(0, 1, 0)]+4eK0+6K0

“tG(0, 0, 1)=2(1+e)[G(1, 0, 1)−G(0, 0, 1)]+4[G(0, 1, 1)−G(0, 0, 1)]

+8K+8eK

(14)

By virtue of invariance under reflections, these equations also hold for
the other nearest neighbors rF=(−1, 0, 0), (0, −1, 0), and (0, 0, −1). The
following three equations arise from the next-nearest neighbor sites,
rF=(1, 1, 0), (0, 1, 1), and (1, 0, 1), and their reflections:
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“tG(1, 1, 0)=(1+e)[G(2, 1, 0)+G(0, 1, 0)−2G(1, 1, 0)]

+2[G(1, 2, 0)+G(1, 0, 0)−2G(1, 1, 0)]

+4[G(1, 1, 1)−G(1, 1, 0)]−2K0−2eK0

“tG(0, 1, 1)=2(1+e)[G(1, 1, 1)−G(0, 1, 1)]

+2[G(0, 2, 1)+G(0, 0, 1)−2G(0, 1, 1)]

+4[G(0, 1, 0)−G(0, 1, 1)]−4[K0+K]

“tG(1, 0, 1)=(1+e)[G(2, 0, 1)+G(0, 0, 1)−2G(1, 0, 1)]

+4[G(1, 1, 1)−G(1, 0, 1)]

+4[G(1, 0, 0)−G(1, 0, 1)]−4eK−4K0

(15)

Increasing the separation of the participating sites further, to rF=(2, 0, 0)
and (0, 2, 0), we obtain:

“tG(2, 0, 0)=(1+e)[G(3, 0, 0)+G(1, 0, 0)−2G(2, 0, 0)]

+4[G(2, 1, 0)−G(2, 0, 0)]+4[G(2, 0, 1)−G(2, 0, 0)]−2eK0

“tG(0, 2, 0)=2(1+e)[G(1, 2, 0)−G(0, 2, 0)]

+2[G(0, 3, 0)+G(0, 1, 0)−2G(0, 2, 0)]

+4[G(0, 2, 1)−G(0, 2, 0)]−2K0

(16)

And finally, all G’s with |x|+|y|+|z| > 2 satisfy homogeneous equations:

“tG(i, j, k)=(1+e)[G(i+1, j, k)+G(i−1, j, k)−2G(i, j, k)]

+2[G(i, j+1, k)+G(i, j−1, k)−2G(i, j, k)]

+4[G(i, j, k−1)−G(i, j, k)] (17)

The last equation contains the full anisotropic lattice Laplacian, acting
on G(i, j, k), without any inhomogeneities being generated. We note, for
further reference, that the right hand sides of Eqs. (14)–(17) contain con-
tributions from exchanges along and against the three lattice directions.
Starting from Eq. (8), it is of course easy to keep track of terms originating
in transverse vs. parallel jumps. Below, this distinction will become impor-
tant when we turn to energy currents.
To solve this system, we closely follow the method presented in ref. 20.

To summarize briefly, we express G through its Fourier transform S̃ and
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invoke the completeness of complex exponentials to project out an alge-
braic equation for S̃(k, p, q). The three integrals

I1 — F S̃(1− cos k)

I2 — F S̃(1− cos p) (18)

I3 — F S̃(1− cos q)

must be treated as unknowns for the time being. Defining the anisotropic
lattice Laplacian in Fourier space,

d(k, p, q) — 2(1+e)(1− cos k)+4(1− cos p)+4(1− cos q) (19)

we can solve for S̃:

S̃(k, p, q)=
L(k, p, q)
d(k, p, q)

(20)

where

L(k, p, q) — 2(1+e)(1− cos k) I1+4(1− cos p) I2+4(1− cos q) I3
+(2eK0+8K0) 2 cos k+(4eK0+6K0) 2 cos p

+(8eK+8K) cos q−(2eK0+2K0) 4 cos k cos p

−(4eK+4K0) 2 cos k cos q−4(K0+K) 2 cos p cos q

−4eK0 cos 2k−4K0 cos 2p (21)

Due to the appearance of the three integrals I1, I2, and I3 in L, Eq. (20) is
not yet a fully explicit solution for S̃. To determine these three coefficients,
we need three linearly independent equations. One of these equations is
given by the value of G at the origin, 1=G(0, 0, 0)=> (1+S̃), and the
remaining two can be obtained directly from the definitions of I1 and I3 in
Eq. (18):

0=F
L(k, p, q)
d(k, p, q)

0=−I1+F
L(k, p, q)
d(k, p, q)

(1− cos k)

0=−I3+F
L(k, p, q)
d(k, p, q)

(1− cos q)

(22)
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After inserting Eq. (21) for L, this leads to a set of three inhomogeneous,
linear equations for the three I’s, which are easily solved by a matrix
inversion. Omitting some lengthy details, we just note the following overall
features: (i) All three coefficients are functions of K, K0, and e; (ii) for the
whole range of fields e and for K0=1 and K=±1 (attractive and repul-
sive inter-layer interactions), I1 and I2 are negative, while I3 is positive for
K=−1 and negative for K=+1.
This concludes the calculation of the structure factor. To summarize,

we obtain

S(k, p, q)=1+
L(k, p, q)
d(k, p, q)

+O(K2, K20, KK0) (23)

Even at the lowest nontrivial order, this solution carries a significant
amount of information about our system. For example, we note that the
anisotropic momentum dependence of numerator and denominator leads
to power law correlations in the x- and y-directions. (4, 20, 25) Focusing speci-
fically on the phase diagram, we show in the following how to extract an
approximate shape of the critical lines.

3.2. The Critical Lines

For the bilayer system, we need to identify, and distinguish, two types
of continuous transitions, namely, from disorder (D) into the strip (S) and
the full-empty (FE) phases, respectively. Since the D-S transition is marked
by the appearance of phase-separated strips in each layer, aligned with the
driving force, it can be located by seeking singularities in limpQ 0 S(0, p, 0).
In contrast, the D-FE transition exhibits homogeneous, but opposite
magnetizations in the two planes, so that it can be found by considering
S(0, 0, p). Not surprisingly, these two structure factors are precisely the
order parameters chosen in the MC studies. (10)

Yet, another subtlety must be considered: in a typical high tempera-
ture expansion such as ours, only a finite number of terms can be com-
puted. Hence, any perturbative result for the structure factor must be finite,
and instead, the radius of convergence of the expansion must be estimated.
Even this is not practical here, since we have only two terms of the series.
To circumvent these restrictions, (20) we extract the singularity by looking
for zeros of S−1, to first order in K and K0.
Starting from Eq. (23), we obtain

S−1(k, p, q)=1−
L(k, p, q)
d(k, p, q)

+O(K2, K20, KK0) (24)
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and seek to locate the zeros of limpQ 0 S−1(0, p, 0) for the D-S transition,
and of S−1(0, 0, p) for the D-FE transition. Of course, we should ensure
that these are the first zeros which are encountered upon lowering the
temperature. Therefore, we consider, more generally, the behavior of
S−1(k, p, q) at small k, p and fixed q. Since the zeros of S−1 are obviously
identical to those of d−L in Eq. (24), we compute the appropriate limits
from Eqs. (19) and (21). Introducing some simplified notation, we write

lim
k, pQ 0

[d(k, p, q)−L(k, p, q)]

— y||(q) k2+2y+(q) p2+4yz(1− cos q)+O(k4, p4, k2p2) (25)

and read off

y||(q)=(1+e)(1−I1)−10eK0+4K0−(4eK+4K0) cos q

y+(q)=1−I2−3K0−(2K0+2K) cos q (26)

yz=1−I3−4K0

In a field-theoretic context, (12) these quantities play the role of diffusion
coefficients: y|| and y+ control the in-plane diffusion in the parallel and
transverse directions, respectively, while yz controls the cross-plane hopping.
For high temperatures, i.e., small values of K0=bJ0 and K=bJ, all

three y-coefficients are positive. Seeking zeros of these expressions, as K0
and K increase, we need to consider the two cases q=0 and q=p sepa-
rately. For q=0, we find that y+(0) has a single zero at a critical b

S
c , for

given J0, J, and e. At these parameter values, y||(0) and yz remain positive.
Similarly, for q=p, the coefficient yz is the one which vanishes first as b
increases, reaching zero at a critical bFEc . Converting into temperatures,
we obtain two functions, TSc (J0, J, e) and T

FE
c (J0, J, e), and we need to

identify the larger of the two: If max[TSc (J0, J, e), T
FE
c (J0, J, e)]=

TSc (J0, J, e), the order-disorder transition is of the D-S type. Otherwise, if
max[TSc (J0, J, e), T

FE
c (J0, J, e)]=T

FE
c (J0, J, e), the FE phase is selected

upon crossing criticality.
While the two critical lines, TSc (J0, J, e) and T

FE
c (J0, J, e), can in prin-

ciple be found analytically, the details are not particularly illuminating.
Instead, we present a range of numerical results below. For example, for
infinite E (e=0), we obtain

kBT
S
c (J0, J, 0)=4.39J0+2.11J

kBT
FE
c (J0, J, 0)=4.14J0−1.36J

(27)
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For finite E with e=exp(−bE)=0.5, all coefficients decrease and we find

kBT
S
c (J0, J, 0.5)=4.15J0+2.03J

kBT
FE
c (J0, J, 0.5)=4.05J0−1.70J

(28)

In each case, the bicritical point is defined through the solution of
TSc (J0, J, e)=T

FE
c (J0, J, e). For comparison, we also quote the equilibrium

(E=0) results:

kBT
S
c (J0, J, 1)=4J0+2J

kBT
FE
c (J0, J, 1)=4J0−2J

(29)

which exhibit the expected JQ −J symmetry.
Recalling that the MC simulations were performed at fixed, positive in-

plane coupling J0, we need to consider only the dependence on the cross-
plane coupling J which may take either sign. All of our results show that,
for positive J, the D-S transition dominates while, for sufficiently negative J,
a D-FE transition is found. In the following, we discuss the non-equilib-
rium (E ] 0) results in more detail.
Figure 2 shows the critical lines for two typical values of the param-

eters, e=0.5 and J0=1. Being the result of a first order approximation, the
critical lines must of course be linear in J. Therefore, quantitative agree-
ment with the simulation data cannot be expected; nevertheless, several
important features are reproduced: the existence of two ordered phases and
the shift of the bicritical point to higher values of T and negative J. As a
result, the S phase survives for small, negative J, despite being energetically
unfavorable. This phenomenon can be explained qualitatively (10) by noting
that long-range negative correlations transverse to E dominate the ordering
process for positive J, and this mechanism continues to be effective for a
small region of negative J. For large and negative J, the disordered state
orders into the full-empty (FE) phase, characterized by the planes being
mainly full or empty. Finally, we comment on the dependence of the criti-
cal lines, specifically TSc (1, 1, e) and T

FE
c (1, −1, e), on the field parameter

e=exp(−bE), shown in Fig. 3. For E=0, both temperatures are equal,
by virtue of the JQ −J symmetry of the equilibrium system. As the field
becomes stronger, the critical temperature of the D-S transition increases,
in contrast to the critical temperature of the D-FE transition which
decreases. This behavior agrees qualitatively with the trend observed in the
simulations. (10, 26)
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Fig. 2. The dependence of the critical temperature, max[TSc (J0, J, e), T
FE
c (J0, J, e)], on the

cross-layer coupling J, for e=0.5 and J0=1. Filled diamonds (open squares) indicate that the
transition is of the D-S (D-FE) type. Critical temperatures for J > 0.1 (J < −0.1) can be
obtained by linear extrapolation of the D-S (D-FE) branch.

There are several other quantities of physical interest which are
immediately related to the two-point correlations, such as the steady-state
particle and energy currents. To extract these, we first discuss the inverse
Fourier transform of the structure factor, focusing specifically on the
nearest-neighbor correlations.

5
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7

0 0.2 0.4 0.6 0.8 1
ε

T c

Fig. 3. The critical temperatures, TSc (1, 1, e) corresponding to a D-S transition (filled dia-
monds) and TFEc (1, −1, e) corresponding to a D-FE transition (open squares) as functions of
the field parameter e=exp(−bE).
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3.3. Related Physical Observables

Nearest-Neighbor Correlations. These are easily found from our
solution for the structure factor, Eq. (23). For example, the nearest-neigh-
bor correlation in the field direction is given by:

G(1, 0, 0)=F S̃(k, p, q) cos k+O(K2, K20, KK0) (30)

Since > S̃=0 by virtue of G(0, 0, 0)=1, we obtain G(1, 0, 0)=−I1 and
similarly, G(0, 1, 0)=−I2 and G(0, 0, 1)=−I3, all to first order. These
three integrals are already known since they were required for the discussion
of the critical lines. Specifically, for e=0.5 we find, neglecting corrections
of O(K2, K20, KK0):

G(1, 0, 0)=0.949K0+0.030K

G(0, 1, 0)=0.849K0−0.034K (31)

G(0, 0, 1)=−0.055K0+1.702K

For reference, we also quote the first order results for the equilibrium
(E=0) correlations:

Geq(1, 0, 0)=Geq(0, 1, 0)=K0

Geq(0, 0, 1)=2K
(32)

Figure 4 shows the drive dependence of the three nearest-neighbor
correlation functions, at K0=1 and K=±1, to illustrate their behavior
in two typical domains (attractive and repulsive cross-layer coupling). Of
course, these values of K and K0 are not ‘‘small,’’ but in a linear approxi-
mation they just serve to fix a scale. Consistent with the interpretation of
the drive as an additional noise which tends to break bonds, all correlations
are reduced compared to their equilibrium value. Further, as the field is
switched on, the JQ −J symmetry of the equilibrium system is broken,
and the correlations for repulsive and attractive cross-layer coupling differ
from one another. The details of how they differ provides some insight into
the ordered phases which will eventually emerge.
The first plot (Fig. 4a) shows the correlation function for a nearest-

neighbor bond within a given plane, aligned with the drive direction. It is
interesting to note that the correlations for repulsive cross-layer coupling
are more strongly suppressed than their counterparts for attractive J. This
feature becomes more transparent when we consider nearest-neighbor cor-
relations transverse to the drive, but still within the same plane (Fig. 4b).
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Fig. 4. Nearest-neighbor pair correlations along the (a) x-, (b) y-, and (c) z-axes, as func-
tions of the drive parameter e, for K0=|K|=1. Filled diamonds (open squares) refer to
ferromagnetic (antiferromagnetic) cross-layer coupling K=+1 (K=−1).

For attractive cross-layer coupling, we note that G(1, 0, 0) is considerably
enhanced over G(0, 1, 0), while the two correlations are roughly equal in
the repulsive case. This indicates a tendency to form droplets of correlated
spins which are elongated in the field direction for J=+1 while remaining
approximately isotropic for J=−1, hinting at the nature of the associated
ordered phases (strip-like vs. uniform within each layer). This picture is
completed when we consider the cross-plane correlations G(0, 0, 1) (Fig. 4c):
These are positive in the attractive, and negative in the repulsive case,
demonstrating the tendency towards equal vs. opposite local magnetiza-
tions on the two layers. Given that we have performed only a first order
calculation, the results really carry a remarkable amount of information
about the system. Encouraged by these observations, we now consider two
other quantities, namely, the particle and energy currents.

The Particle Current. Due to the bias in conjunction with periodic
boundary conditions, the bilayer system carries a net particle current, OjP.
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Since only nearest-neighbor exchanges are possible, this current is propor-
tional to the density (number per site) of available particle-hole pairs in the
field direction. The transition rate c|| along this direction, given in Eq. (10),
then counts the fraction of these pairs which will actually exchange per unit
time. Specifically, in configuration {s}, the particle current can be written
as

j({s})=
1
2L2

C
rF

s(rF)−s(rF+x̂)
2

c||(rF, rF+x̂; {s}) (33)

For infinite E, this expression simplifies considerably, since jumps against
the field will be completely suppressed.
After a few straightforward algebraic manipulations, the average

current can be expressed through the pair correlations along the field
direction. To first order in K and K0, we obtain

OjP=1
4 (1− e)[1−G(1, 0, 0)]+O(K

2, K20, K0K) (34)

which shows that it is non-zero only if E ] 0. Further, it takes its maximum
value at infinite temperature and is reduced by (attractive) nearest-neighbor
interactions. The graph (Fig. 5) shows the field-dependence of this current,
for K0=1 and K=±1. Since nearest-neighbor correlations along the field
are much larger for positive J, indicating a predominance of particle-par-
ticle or hole-hole pairs, the current is reduced relative to the repulsive case.

Energy Currents. Another interesting quantity associated with driven
dynamics is the change in configurational energy during one Monte Carlo
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Fig. 5. The average particle current, OjP, vs. the drive parameter e, for K0=|K|=1. Filled
diamonds (open squares) refer to ferromagnetic (antiferromagnetic) cross-layer coupling.
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step. In the steady state, by definition, the average configurational energy is
of course constant. However, particle-hole exchanges parallel to the field
direction tend to increase the energy, since the drive can easily break
bonds. In contrast, exchanges transverse to E are purely energetically
driven and hence, prefer to satisfy bonds so that the energy decreases. (1) In
summary, we have

7dH
dt
8
||
=−7dH

dt
8

+

> 0 (35)

Even if a particle current were absent, the presence of energy currents
would signal the non-equilibrium steady state.
Since the configurational energy involves only nearest-neighbor bonds,

it is obvious that only the time evolution of nearest-neighbor correlations
plays a role in these two fluxes. Specifically, we have

L−2 7dH
dt
8
||
=−J0 1

“

“t
2
||
[G(1, 0, 0)+G(0, 1, 0)]−2J 1 “

“t
2
||
G(0, 0, 1)

(36)

where the subscript on the time derivatives reminds us to select only those
processes which are due to parallel exchanges alone. These can be easily
identified from the terms contributing to Eq. (8) or (14). Of course, there is
an analogous equation for OdH/dtP + . Collecting the relevant contribu-
tions and multiplying both sides by the inverse temperature b to express
everything in terms of K0 and K, we find:

L−2 7dbH
dt
8
||
=−K0{(1+e)[G(2, 0, 0)−G(1, 0, 0)]

+2(1+e)[G(1, 1, 0)−G(0, 1, 0)]+6eK0}

−2K{2(1+e)[G(1, 0, 1)−G(0, 0, 1)]+8eK} (37)

The correlation functions spanning next- and next-next nearest neighbors
which appear here can again be determined from our solution for the
structure factors. The result, at K0=1 and K=±1, is shown in Fig. 6 as a
function of e. As expected, this flux is always non-negative and monotoni-
cally increasing as a function of E. We note that the current for K=−1 is
slightly larger than its counterpart for K=+1. Since it is a complicated
function of the couplings and several correlations, we cannot offer a simple
intuitive explanation of this property.
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Fig. 6. The average energy current, L−2OdbH/dtP||, vs. the drive parameter e, for K0=|K|
=1. Filled diamonds (open squares) refer to ferromagnetic (antiferromagnetic) cross-layer
coupling.

4. CONCLUDING REMARKS

Based directly on the microscopic lattice dynamics, the high tempera-
ture series provides us with a simple analytic tool which complements field
theoretic approaches. Even in a first order approximation, it is remark-
able how many features of the MC results are—at least qualitatively—
reproduced. To summarize our results briefly, we derive, and solve, a set of
equations for the stationary pair correlation functions and their Fourier
transforms, the equal-time structure factors. By matching the series expan-
sion of the latter with the expected critical singularity, we find two critical
lines, separating the disordered phase from the strip phase (S) and the full-
empty phase (FE), respectively. We also observe the shift of the bicritical
point which marks the juncture of these two lines, in very good qualitative
agreement with the simulations. To illustrate the non-equilibrium character
of the steady state, we compute the particle current and the energy flux
through the system. The particle current is determined by the nearest-
neighbor correlations in the field direction, and takes its maximum value in
the absence of interactions. Our findings for the energy current confirm
intuitive expectations: parallel exchanges tend to increase, while transverse
exchanges tend to lower, the configurational energy.
A brief comment on boundary conditions is in order. Even though it is

quite natural to use periodic boundary conditions in all lattice directions, it
is not unreasonable to consider other choices, especially in the z-direction.
To recall, periodicity in z implies that the site (x, y, 0) is connected to the
site (x, y, 1) via two bonds which enter into both the energetics and and the
dynamics (i.e., there are two channels for a particle to move from one layer
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to the other). Alternately, we can choose open boundary conditions in z
and consider only a single energetic bond and single dynamical channel
between these two sites. Mixtures of these two cases can also be con-
structed: i.e., imposing periodic boundary conditions on the energetics, but
allowing only a single channel for particle moves, or vice versa. The first
(second) ‘‘mixed’’ case is reducible to the case of open (periodic) boundary
conditions, with J replaced by 2J (J/2). Even though details are not pre-
sented here, we did, in fact, compute the critical lines for different cross-
plane boundary conditions. The main conclusions of our study, namely,
the existence of the two continuous phase transitions and the shift of the
bicritical point, hold for all of these variations.
The high temperature expansion presented here has two shortcomings.

First, our results provide no insight into the first-order transitions between
the FE and S phases which were observed in the simulations. As in all high
temperature series, the first singularity which is encountered as T is lowered
determines the radius of convergence. A low-temperature approach would
be necessary to capture transitions between ordered phases. Second, our
series is currently limited to just one nontrivial term. In order to compute
the second order correction to the pair correlations, we would need to
know the full stationary distribution, Pg, to first order. Writing the sta-
tionary master equation in the form 0=LPg where L is the linear operator
(‘‘Liouvillean’’) defined by the transition rates, this requires the full inverse
of L, to zeroth order. Finding this inverse is a highly nontrivial (and as yet
unsolved) problem.
Inspite of these drawbacks, the high temperature expansion is one of

the few analytic tools which provide insight into non-equilibrium steady
states. It is conceptually and mathematically straightforward, and—at least
at the qualitative level—surprisingly reliable. Since it is based directly on
the microscopic lattice dynamics, it still carries information about nonuni-
versal properties which would be lost upon taking a continuum limit. It is
therefore a valuable complement to both simulations and field theoretic
methods.
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